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We investigate the stability of interfacial waves in conducting fluids under the influence
of a vertical current density, paying particular attention to aluminium reduction cells
in which such instabilities are commonly observed. We develop a wave equation
for the interface in which the Lorentz force is expressed explicitly in terms of the
fluid motion. Our wave equation differs from previous models, most notably that
developed by Urata (1985), in that earlier formulations rested on a more complex,
implicit coupling between the fluid motion and the Lorentz force. Our formulation
furnishes a number of quite general stability results without the need to resort to
Fourier analysis. (The need for Fourier analysis typifies previous studies.) Moreover,
our equation supports both travelling and standing waves. We investigate each in turn.

We obtain three new results. First, we show that travelling waves may become
unstable in the presence of a uniform, vertical magnetic field. (Our travelling waves are
quite different to those discovered by previous investigators (Sneyd 1985 and Moreau
& Ziegler 1986) which require more complex magnetic fields to become unstable.)
Second, in line with previous studies we confirm that standing waves may also become
unstable. In this context we derive a simple energy criterion which shows which types
of motion may extract energy from the background magnetic field. This indicates
that a rotating, tilted interface is particularly prone to instability, and indeed such a
motion is often seen in practice. Finally, we use Gershgorin’s theorem to produce a
sufficient condition for the stability of standing waves in a finite domain. This allows
us to place a lower bound on the critical value of the background magnetic field at
which an instability first appears, without solving the governing equations of motion.

1. Introduction
Aluminium is produced by electrolysis in Hall–Heroult reduction cells. These cells

consist of large carbon blocks (electrodes), between which lie a shallow layer of liquid
aluminium together with a second layer of electrolyte (called cryolite). Unwanted
disturbances are readily triggered at the cryolite–aluminium interface. (See figure 1.)
In essence, these are long-wavelength interfacial gravity waves, modified by the intense
magnetic and electric fields which pervade the cell. Under certain conditions these
disturbances are observed to grow, disrupting the operation of the cell.

A somewhat simplified model of a cell is shown in figure 1. A large vertical current,
perhaps 200–300 kA, flows downward from the carbon anode, passing through the
electrolyte and aluminium layers before being collected in carbon cathode blocks at
the base of the cell. The liquid layers are broad and shallow, perhaps 4 m× 10 m in
plan, yet only 5–25 cm in depth. As we shall see, this large aspect ratio plays a central
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Figure 2. The perturbation in current and magnetic field.

role in the instability. In particular, it takes only a slight tilting of the interface to
produce a substantial redistribution of current in the cell.

The second thing which strongly influences dynamics of the interface is the electrical
conductivity of the materials involved. The aluminium is an excellent conductor, the
carbon a moderate conductor, and the cryolite a very poor conductor. This ordering
of the conductivities is critical to the way in which the current redistributes within the
cell following a movement of the interface. It also explains why the fluid layers are
kept so shallow. Most of the electrical power consumed by the cell is lost to Ohmic
heating of the highly resistive electrolyte.

The earliest attempts to characterize these interfacial instabilities date back to the
papers of Sele (1977) and of Urata (1985). These authors noticed that a displacement
of the interface inevitably leads to a redistribution of current, J , within the cell. This
is illustrated in figure 2 where the perturbation in current, j , is shown. In effect,
excess current is drawn into the aluminium at those points where the thickness of
the highly resistive cryolite is reduced, and less current is drawn at points where
the cryolite depth is increased. The resulting perturbation in current is as shown,
downward at the wave crests and upward at the valleys. Since the carbon cathode is
much more resistive than the aluminium, these perturbations in vertical current feed
into the aluminium but do not penetrate the cathode. Associated with j there is a
perturbation in the magnetic field, b, which is directed parallel to the wave crests. If
J 0 and B0 are the unperturbed current density and magnetic fields, then movement of
the interface produces a perturbation in the Lorentz force given by J 0 × b+ j × B0.

Of course, the key question is whether or not this perturbation in force acts to
reinforce the initial disturbance. This question was clarified, for cases where the lateral
boundaries of the cell are ignored, by Sneyd (1985, 1992), Moreau & Ziegler (1986),
and Pigny & Moreau (1992). These authors considered the (infinite) interface to be
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perturbed by travelling waves. They found that the redistribution in current could
combine with certain gradients in B0, particularly horizontal gradients in the vertical
field, Bz , to cause an instability. The dominant physical mechanism underlying this
phenomenon was identified by Davidson (1994).

These travelling-wave models have one serious drawback: they leave open the
question of the influence of the lateral boundaries of the cell. This is particularly
important as the waves observed in practice have wavelengths comparable with the
lateral dimensions of the cell.

The standing-wave problem has recently been tackled by Sneyd & Wang (1994),
Bojarevics & Romerio (1994), and, to a lesser extent, by Segatz & Droste (1994).
Although these papers look, at first glance, rather different, the substance of their
arguments is quite similar. They conclude that the stability characteristics of standing
waves are very different to those of the travelling waves investigated earlier. Conse-
quently, the papers by Sneyd & Wang and Bojarevics & Romerio represent a quite
new insight into the phenomenon of cell stability. (We shall make frequent reference
to these papers, so it is convenient to label them as SW94 and BR94.)

Both of the papers start by noting that, in the absence of a magnetic field, the
interface may support an infinite number of conventional standing waves. The normal
modes associated with these gravitational waves form an orthogonal set of functions,
so that one can represent an arbitrary disturbance of the interface as the superposition
of many such gravitational modes. When the Lorentz forces are neglected, these modes
are, of course, decoupled. However, when the Lorentz forces are taken into account,
certain gravitational modes are coupled. That is, the redistribution of current caused
by one gravitational mode gives rise to a perturbed Lorentz force which, when
Fourier-decomposed, can excite many other gravitational modes. When the magnetic
field is large enough, this coupling leads to an instability, involving two or more
adjacent gravitational frequencies.

The onset of instability was identified in SW94 and BR94 by the following method.
First, they established a coupled set of equations of the form

ẍ+Ωx = εKx. (1.1)

Here x is a column vector which represents the amplitudes of the gravitational modes.
The matrix Ω is diagonal with elements equal to the square of the gravitational
frequencies, and K is the interaction matrix which arises from the Lorentz force. The
scalar ε is some dimensionless measure of this force. For example, ε may be the ratio
of J0B0 to inertia.

All of the coupling arises from K . Its columns are determined by calculating the
redistribution of current caused by one gravitational mode, evaluating the associated
Lorentz force and then Fourier decomposing this force into components. We might
refer to (1.1) as representing a Fourier or ‘mode-by-mode’ analysis of the problem.

These coupled equations represent an eigenvalue problem for the square of the
natural frequencies. As noted in BR94, K is skew-symmetric, so the eigenvalues need
not be real. In general there is a critical value of ε at which complex eigenvalues
appear, representing instability.

A key point noted in both papers, but particularly emphasized in BR94, is that
the dominant contribution to the perturbed Lorentz force arises from the interaction
between a horizontal flow of current in the aluminium and the vertical component
of the background magnetic field, Bz . The predictions of SW94 and BR94 are quite
different to those of the earlier travelling-wave models. That is, standing waves are
predicted to go unstable once Bz exceeds some critical value. Travelling waves, on the
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other hand, are unstable whenever there is a horizontal gradient in Bz , provided, of
course, that friction is ignored. The difference in these stability criteria suggests that
the physical origins of the two types of instability are distinct.

Our paper falls into two parts. The first half focuses on the mechanisms of the
instability. We start with a simple mechanical analogue which captures all the essential
features of the instability. Next we derive a (wave-like) partial differential equation
for the interface in which the Lorentz force is expressed directly in terms of the
interfacial movement. By dispensing with the mode-by-mode analysis of SW94 and
BR94, we arrive at a more compact description of the dynamics. This new equation
allows us to identify the physical origin of the instability and to derive a simple energy
criterion which shows which types of motion may extract energy from the Lorentz
forces. On route, we show that the instability is not restricted to standing waves but
may manifest itself in travelling waves and that these travelling waves are different
to those studied before.

In the second half of this paper, we return to the Fourier approach of SW94 and
BR94. (Equation (1.1) follows directly from our wave equation.) The key finding here
is that a sufficient condition for stability can be obtained without the need to solve
the equations of motion. Rather, Gershgorin’s theorem can be used to establish a
stability criterion. This allows us to place a lower bound on the critical value of the
background magnetic field at which an instability first appears.

2. Simplifying assumptions and governing equations
Our simplified model of the cell is shown in figure 1. The undisturbed depths of

cryolite and aluminium are h and H , and the unperturbed current flow is purely
vertical and has magnitude J0. We use a Cartesian coordinate system, (x, y, z), where
z is vertical and directed upward. The origin for z lies at the undisturbed interface.
On occasion we shall refer to cells which are rectangular in plan view, and these are
given dimensions Lx and Ly . However, much of the analysis is can be applied to any
shape of cell. The undisturbed interface is taken to be flat.

In accordance with experimental observations, we take the characteristic time-scale
for the wave motion to be much greater than the diffusion time of the magnetic
field. That is, we make the pseudo-static approximation µσuh � 1, where µ is the
permeability, σ is the conductivity, and u is a typical velocity. Thus, each time the
interface moves, the current immediately relaxes to a new equilibrium distribution.
Ohm’s law is then

J = σE = −σ∇Φ; ∇2Φ = 0. (2.1)

We are concerned only with linear stability, so we consider infinitesimal perturba-
tions of the interface of the form

zs = η(x, y, t); η � h,H.

The corresponding distributions of J and B are

J = J 0 + j = −J0êz − σ∇φ,
B = B0 + b.

The boundary conditions on J arise from the ranking of the conductivities discussed
in §1. That is,

σa � σcarbon � σc. (2.2)
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Here the subscripts ‘a’ and ‘c’ refer to the aluminium and cryolite. It is not difficult
to show (see Davidson 1994) that (2.2) requires φc = 0 on z = h and ∂φa/∂z = 0
on z = −H . Here φ is the perturbation in the electrostatic potential. The first of
the boundary conditions states that the anode potential is fixed, while the second
ensures that j does not penetrate into the cathode blocks. The boundary conditions
at the interface are also discussed in Davidson (1994). They are continuity of normal
current and the jump condition φc − φa = (σ−1

a − σ−1
c )J0η.

Like SW94 and BR94, we shall assume that the fluid is inviscid, that surface tension
can be ignored, and that there is no background motion in the unperturbed state.
The first of these assumptions means that our equations of motion cannot mimic the
damping of high-wavenumber perturbations which occurs in practice. To compensate
for this, we follow SW94 and BR94 and simply ignore those modes whose wavelengths
are shorter than a certain (small but arbitrary) value.

The last of the three assumptions above (i.e. u0 = 0) greatly simplifies the stability
analysis. Indeed, the inclusion of background motion increases the complexity of the
problem to the level where analytical methods probably cease to be useful and a
numerical approach is required. That is, the background flow must be calculated for
each distribution of J 0×B0, which in turn requires the introduction of some dissipation
model. Moreover, terms like u0 · ∇u must be retained in the stability analysis which,
in view of the complexity of u0, makes the subsequent analysis difficult. In line with
previous investigations, therefore, we chose u0 to be zero although it is clear that
this is not the case in a real cell. However, this simplification does severely limit the
allowable distributions of B0. That is, to ensure that we are perturbing about an
equilibrium configuration, we must satisfy ∇ × (J 0 × B0) = 0. Given our assumed
distributions of J 0, we require B0 to be of the form

B0 = (Bx(x, y), By(x, y), Bz), (2.3)

where Bz is spatially uniform. We shall assume that all three components of B0 are
of the same order of magnitude. From Amperes law, ∇ × B = µJ , this implies that
Bx ∼ By ∼ Bz ∼ µJ0L where L is a typical lateral dimension.

We shall also follow SW94 and BR94, and indeed all other previous investigations,
in assuming that the lateral boundaries of the cell are solid and impermeable. In fact,
this is often not the case, but it does seem like a reasonable starting place.

Our final assumption relates to the aspect ratio of the liquid layers. We shall assume
that kh � 1, where k is a typical wavenumber. In effect, we use the shallow-water
approximation. This leads directly to a number of simplifying features, many of
which are noted in either SW94 or else in BR94. At this point we shall simply state
these simplifications. Later, in §4, we confirm that each of these simplifications is
indeed valid. In the meantime, we merely note that, as a result of the shallow-water
approximation, and to leading order in kh, it may be shown that:

(a) j is vertical in the cryolite;
(b) j is horizontal in the aluminium and is uniformly distributed across that layer;
(c) the perturbed Lorentz force acting on the cryolite may be neglected;
(d) the velocity in each layer is uniform in z and horizontal;
(e) the dominant contribution to the perturbed Lorentz force in the aluminium is

j × (Bz êz).
In fact, it is not difficult to see how these simplifications arise. Consider the situation

shown in figure 3, where the disturbance has a long wavelength. Approximations
(a) and (b) are purely geometric and are a consequence of the ranking of the
conductivities. That is, the dominant resistance to the flow of current is the thin sheet
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Figure 3. A long-wavelength disturbance of the interface results in a perturbed current flow, j ,
which is largely vertical in the cryolite and horizontal in the aluminium. It also results in a ‘sloshing’
motion in the two liquids which is largely horizontal.

of cryolite, so the current passes directly downward through this layer (condition (a)).
The aluminium, which is a very good conductor, is almost an equipotential surface, so
that spatial variations of Jz in the cryolite (due to undulations of the interface) lead
to a ‘shorting’ of the perturbed current through the aluminium. This ‘shorted’ current
is almost purely horizontal (condition (b)). The neglect of the perturbed Lorentz
force in the cryolite (condition (c)) stems from the fact that jc � ja, which in turn
arises from the aspect ratio kh � 1. The uniformity of the velocity in the two fluid
layers (condition (d)) follows from the fact that the Lorentz force in the aluminium
is independent of depth.

This leaves only simplification (e) to justify, and here there is some subtlety in the
argument. Using subscripts H and V to indicate horizontal and vertical components
of J and B, it seems reasonable to neglect jH×BH and jV ×BH because the former is
vertical and so merely perturbs the vertical pressure gradient, while the latter is much
smaller than jH ×BV , by virtue of (b). (Actually, jH ×BH does cause some horizontal
flow via the horizontal gradients in pressure. However, this is of order (kH)jH × BH
and so is much less than jH × BV .) Finally, the neglect of b × J 0 relies on the fact
that b is of order µjHH , while B0 is of order µJ0Lx, so that J 0 × b is of order kH
smaller than j × BV . Condition (e) was particularly emphasized in BR94.

As already noted, we shall justify conditions (a) to (d) in §4. Independent confir-
mation may be obtained by taking the limit kH → 0 in the analysis of SW94, which
provides an explicit proof of assumptions (a) to (e).

3. A mechanical analogue of interfacial instabilities
To provide some initial physical insight into reduction cell instabilities we look first

at a simple mechanical analogue. This captures all the essential physics and points
the way for the analysis of the more complex hydrodynamic problem.

Consider the compound pendulum shown in figure 4. It consists of a large flat
aluminium plate attached to an adjacent, parallel surface by a light, rigid strut. The
strut is pivoted at its top end so that the plate is free to swing about two horizontal
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Figure 4. The compound pendulum.

axes, x and y. Let the plate have thickness H and lateral dimensions Lx, Ly . The
gap h between the plate and the upper surface (which is an electrode) is filled with a
weakly conducting electrolyte, and a uniform current, J0, passes vertically downward
through the electrolyte into the plate. This current generates a magnetic field which is
predominantly horizontal. In addition, we impose a uniform, vertical magnetic field,
Bz , as shown. The current which enters the plate from above must be withdrawn from
the bottom of the plate. The manner in which this is achieved is unimportant, so we
shall assume that the current flows horizontally to the centre of the plate where it is
tapped off.

In line with the assumptions which we have made about the cell, we shall assume
that the periods of oscillations are much greater than the diffusion time of the
magnetic field, the conductivity of the aluminium is high enough for the plate to be
treated as an equipotential surface, say Φ = 0, and the plate and electrolyte layer
are thin and broad (Lx, Ly � h,H). In addition, it is convenient (though strictly
not necessary) to assume that Bz � Bx, By so that we may ignore the Lorentz forces
arising from Bx, By . Similarly, it is convenient to assume that the density of the
electrolyte is much less than that of the plate, so that we may ignore the inertia of
the electrolyte.

It is clear that we have replaced one mechanical system (the cell), which has an
infinite number of degrees of freedom, with another which has only two degrees of
freedom. However, the nature of the motion in the two cases is not dissimilar. In
both systems, we have movement of the aluminium associated with a tilting of the
electrolyte–aluminium interface. In a cell this takes the form of a sloshing back and
forth of the aluminium as the interface tilts first one way and then the other (see
figure 3).

Let θx and θy be the angles of rotation of the plate measured about the x- and
y-axes, the origin of which lies at the centre of the electrolyte–plate interface. Also, let
h(x, y) be the local thickness of the electrolyte, Φ0 be the electrode potential, which is
fixed, and h0 be the equilibrium value of h. Then, in the narrow gap approximation,
we have

Φ = Φ0z/h; h = h0 + θyx− θxy.
Equation (2.1) now gives the perturbed current density in the electrolyte as

jc = [J0(θyx− θxy)/h0]êz,

from which we may calculate the net flow of (perturbed) current within the plate:

δIx =
J0Lyθy

2h0

[(
Lx/2

)2 − x2
]

; δIy = −J0Lxθx

2h0

[(
Ly/2

)2 − y2
]
. (3.1)

The resulting Lorentz force acting on the plate can now be calculated, and taking
moments about the pivot, we obtain two equations of motion for the pendulum.
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Figure 5. Variations of ω2 with J0Bz for the compound pendulum.

Setting γx = θx/L
2
x and γy = θy/L

2
y and using ωx and ωy to represent the conventional

gravitational frequencies of the pendulum, we obtain

γ̈x + ω2
xγx = −

(
J0Bz/ρaH

)
γy, (3.2a)

γ̈y + ω2
yγy =

(
J0Bz/ρaH

)
γx. (3.2b)

Notice the similarity between (3.2) and (1.1). Notice also the skew symmetry in the
coupling terms associated with the Lorentz forces. If we now let γ ∼ ejωt, it is easy to
show that ω2 is real for small values of J0Bz and complex for large values of J0Bz .
The transition to instability occurs at

2J0Bz

ρaH
=
∣∣ω2

x − ω2
y

∣∣ . (3.3)

We shall see that remarkably similar expressions determine the stability of the interface
in a reduction cell.

The behaviour of ω2 in the complex plane is shown schematically in figure 5. As
J0Bz is increased the two natural frequencies converge on the real axis. At a critical
value of J0Bz , given by (3.3), the two frequencies meet and then move off into the
complex plane. Clearly, the sensitivity of the pendulum to the destabilizing influence
of J0Bz depends on the initial separation of the natural frequencies.

We may think of the Lorentz force as playing two roles. In the first instance it
modifies the gravitational frequencies, pulling them together on the real axis. Once
these frequencies coincide, so that the plate oscillates at the same frequency in two
directions, the Lorentz force adopts a second role in which it supplies energy to the
pendulum. Unstable motion then follows.

We may use a simple energy argument to show why, whenever the plate oscillates
with a single frequency in two perpendicular directions, an instability is inevitable.
From (3.1), the work done by the Lorentz force, δF · u, is

Ẇ = J0BzLxLy[L
2
yθxθ̇y − L2

xθyθ̇x]/12. (3.4)

Now suppose that θx and θy both oscillate at frequency ω, but are 1
2
π out of phase.

Then the time-averaged value of Ẇ is non-zero, implying unstable motion.
Physically, a tilting of the plate in one direction, say θx, produces a nearly horizontal

flow of current in the aluminium which interacts with Bz to produce a horizontal
force δFx which is in-phase with θx. This tilting also produces a horizontal velocity,
uy , which is 1

2
π out of phase with the force δFx and mutually perpendicular to it.

Two such tilting motions in perpendicular directions can reinforce each other, with
the force from one doing work on the velocity of the other. This is, in effect, the
instability mechanism.
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Note that this instability mechanism is independent of the action of gravity. That
is, provided the plate can oscillate at the same frequency in two directions, it will
become unstable. (Circular and square plates are unstable at arbitrarily small values
of Bz .) The stability threshold, on the other hand, does depend on gravity, in that it
is dependent on the initial separation of the gravitational frequencies.

We shall see that the same distinction arises in reduction cells. That is, the point
at which the interface becomes unstable depends on the initial separation of the
gravitational frequencies for interfacial waves. This was established by SW94 and
BR94. However, the instability mechanism (the mechanism by which unstable growth
is maintained) does not depend on gravity. In fact, if our mechanical analogue is at
all representative of interfacial instabilities, we would expect an instability to develop
whenever the aluminium is free to slosh back and forth at a single frequency in two
mutually perpendicular directions. We shall see that this often provides an accurate
picture of the instability.

4. A generalized shallow-water equation for interfacial waves
We now derive a shallow-water equation for interfacial waves. This equation is more

general than the ‘mode-by-mode’ description of (1.1) in that it makes no assumption
regarding the existence or shape of lateral boundaries. Moreover, it is compact and
so a physical interpretation of the instability is more readily obtained.

We start with conventional shallow-water theory. It is not difficult to show that, to
second order in kH , the pressure in each layer is hydrostatic. As a consequence, we
may apply the conventional shallow-water equation to each layer in turn. This is a
two-dimensional, horizontal equation of motion:

ρ
DuH
Dt

+ ρg∇Ha = −∇P0 + F H.

(See Pedlosky (1979) for a formal justification of the shallow-water approximation
when body forces are present.) Here Ha(x, y) is the aluminium depth, P0 is the
interfacial pressure, and F H is the horizontal body force in each layer. The unfamiliar
term on the left arises from the horizontal gradient in pressure. Note that, since F H is
independent of z (to leading order in kH), this is a strictly two-dimensional equation.
That is,

u = uH (x, y) + O(kH); uH = (ux, uy, 0).

We now linearize our equation of motion about a base state of zero background
motion. Taking Ha = H + η(x, y, t), we obtain

ρ
∂uH
∂t

+ ρg∇η = −∇P0 + F .

Although uH is a two-dimensional velocity field, vertical movement of the interface
means that the two-dimensional divergences of uaH and ucH are both non-zero. In
fact, it is readily confirmed that

∇ · (Hua) = −∇ · (huc) = −∂η
∂t
.

(Here we have dropped the subscript H for convenience.) Next, we replace ua and
uc by the volume fluxes qa = Hua and qc = −huc. Also, by virtue of condition (c)
in §2, we may take F c = 0 (to leading order in kH). This is valid because, as we
shall see, the current in the cryolite is an order of magnitude smaller than that in the
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aluminium. Our governing equations now become

ρc

h

∂qc
∂t
− ρcg∇η = ∇P0, (4.1)

ρa

H

∂qa
∂t

+ ρag∇η = −∇P0 + F a, (4.2)

∇ · qc = ∇ · qa = −∂η
∂t
. (4.3)

We now perform a Helmholtz decomposition on q:

q = qR + qP .

That is, we divide q into a solenoidal, rotational part and an irrotational component
of finite divergence. The boundary conditions on qa and qc are that q · n vanishes at
the boundary, S . An appropriate decomposition is therefore

∇× qP = 0, ∇ · qP = −∂η
∂t
, qP · n = 0 on S; (4.4)

∇× qR = ∇× q, ∇ · qR = 0, qR · n = 0 on = S. (4.5)

(Note that the rotational and potential components of an equation may be equated.
We shall use this later.) Evidently, qR is zero in the electrolyte, while qP is the same
in both layers:

qc = qP ; qa = qP + qR.

We now rewrite (4.1) and (4.2) in terms of qP and qR , eliminate P0 by adding the
equations, and use (4.4) to express η in terms of qP . The resulting equation of motion
is

ρ̄
∂2qP
∂t2
− ∆ρg∇2qP =

∂F a

∂t
− ρa

H

∂2qR
∂t2

, (4.6)

where ρ̄ = ρc/h+ ρa/H and ∆ρ = ρa − ρc. Note that, when the Lorentz force is zero,
we recover the conventional equation for interfacial waves in the shallow-water limit:

∂2qP
∂t2
− c2∇2qP = 0, c2 = ∆ρg/ρ̄. (4.7)

We now evaluate ja, and hence F a, using the long-wavelength approximation of
§2. In the cryolite we have, to leading order in kh, ∂2Φ/∂z2 = 0 from which

Φc = Φ0z/(h− η) + O(kh),

jc = −(J0η/h)êz + O(kh).

This current passes into the aluminium, and so the boundary conditions on jza are

jza = −(J0η/h)êz on z = 0;
jza = 0 on z = −H.

It is readily confirmed (by direct substitution) that the conditions of zero divergence
and zero curl, as well as the boundary conditions given above, are satisfied by

ja = jH (x, y)− (1 + z/H)(J0η/h)êz.

Here jH is the horizontal component of the current density in the aluminium which
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satisfies

∇× jH = 0, ∇ · jH =
J0η

Hh
, jH · n = 0 on S. (4.8)

(This expression for ja looks different to those derived in BR94 and SW94, but it is
readily confirmed that they are identical in the limit kH → 0.) Comparing (4.8) with
(4.4) we find

∂jH
∂t

= − J0

hH
qP . (4.9)

This is the key relationship which allows us to express the Lorentz force in terms
of the fluid motion and therefore deserves some special attention. It is equivalent to
(3.1) which relates the current, and hence the Lorentz force, to the motion of the
pendulum. The physical basis of (4.9) is contained in figure 3. When the interface tilts,
there is a horizontal flow of current from the high to the low side of the interface.
Simultaneously, there is a horizontal rush of aluminium in the opposite direction. It
is this coupling which lies at the heart of the instability, and which is expressed by
(4.9).

We now invoke condition (e) of §2 which states that the leading term in the Lorentz
force arises from the background component of Bz . Substituting for F a in (4.6) gives

∂2qP
∂t2
− c2∇2qP =

J0Bz

ρ̄hH
êz × qP −

1

ρ̄

∂F R

∂t
. (4.10)

Here F R is the rotational part of F a, which satisfies

∇ ·F R = 0, F R · n = 0 on S. (4.11)

Note that F R , like qR , integrates to zero throughout the fluid volume, V . Introducing

ω2
B = J0Bz/ρ̄hH,

we might rewrite (4.10) in the more compact form

∂2qP
∂t2
− c2∇2qP = ω2

B[êz × qP ]P . (4.12)

The subscript P on the bracket implies that we take only the irrotational component
of êz × qP . (The boundary condition on the decomposition follows from (4.11).)
This wave equation differs from previous shallow-water descriptions of the interfacial
waves in that we have expressed the Lorentz force explicitly in terms of the motion.

There are many simplifications embedded in (4.12) which result from the shallow-
water approximation, kh � 1. In order to confirm that we have been consistent
throughout, we have generalized the analysis to arbitrary values of kh and then taken
the limit of small kh. Once again, we arrive at (4.12). Independent confirmation of
(4.12) is provided by SW94. Specifically, when (4.12) is rewritten in matrix form and
applied to a rectangular boundary, the results are identical to those of SW94 in the
limit of small kh. (See §6.)

Finally, to obtain the most compact version of our wave equation, it is convenient
to introduce potentials for qP and F P = F a − F R:

qP = ∇φP ,
∂F P

∂t
= ρ̄ω2

B∇Ψ.

Then (4.12) becomes

∂2φP

∂t2
− c2∇2φP = c2k2

BΨ ; ∇2Ψ = 0, (4.13)
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where kB is defined as ωB/c. The corresponding boundary conditions on φP and Ψ are

∇φP · n = 0, ∇Ψ · n = (∇φP × n)z. (4.14)

Note that the boundary condition on Ψ comes directly from (4.10) and from the
definition of F P .

5. General properties of the governing PDE
The shallow-water equation (4.12) supports both travelling waves and standing

waves. As a prelude to our discussion of instabilities in closed, rectangular domains,
it seems appropriate to examine the general properties of (4.12) and (4.13). We shall
show that both travelling and standing waves may become unstable, and that the
unstable travelling waves are quite different to those studied previously. We also
derive an energy criterion for instability. Finally, we look at circular domains as these
manifest the instability in its purest form.

5.1. Travelling waves

Perhaps the simplest geometry to consider is an infinitely long channel of width L,
say 0 < x < L. The easiest way of identifying travelling waves is to write both Ψ and
φP in the form

φP = φ̂(x) exp[j(ωt− kyy)]

and define a second wavenumber, kx, through the expression

k2
x = ω2/c2 − k2

y.

Then (4.13) gives the eigenvalue problem

φ̂′′ + k2
xφ̂ = −k2

BΨ̂ ,
∂φ̂

∂x
= 0 on x = 0, L;

Ψ̂ ′′ − k2
yΨ̂ = 0,

∂Ψ̂

∂x
= jkyφ̂ on x = 0, L.

The solution for φ̂ is

φ̂ = −k
2
BΨ̂ (0)

k2
x + k2

y

[cosh kyx+ B sinh kyx+ C cos kxx+ D sin kxx],

where the four boundary conditions not only define B, C , and D, but also lead to a
dispersion relationship for kx in the form

2(kBL)4
[
cosh q cos p− 1 + 1

2

(
p/q − q/p

)
sinh q sin p

]
+
(
p2 + q2

)2 (
p/q
)

sinh q sin p = 0, (5.1)

where p = kxL and q = kyL. When the Lorentz forces are zero (kB = 0), this gives
kx = mπ/L, which represents conventional travelling waves in a channel. For a finite
value of kB , and for an arbitrary wavenumber, ky , we can always find a solution of
(5.1) for which kx is real. This represents stable travelling waves.

However (5.1) also supports unstable waves. That is, for real values of kB and ky ,
we can find complex values of kx which satisfy (5.1). This leads to complex frequencies
and therefore to unstable motion. Figure 6 shows the neutral stability curve for waves
in the range 0 < q < 10. Note that these unstable travelling waves are quite distinct
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Figure 6. Neutral stability curves corresponding to (5.1).

from those identified in previous studies. Specifically, our travelling waves require
only a uniform Bz to sustain unstable growth and vanish, or become stable, when the
boundaries are removed.

5.2. An energy criterion for instability

We now turn our attention to closed domains. We start by noting that the coupling
between the components of qP is skew-symmetric. It is precisely this skew-symmetry
which gives rise to the instability of the pendulum. A hint as to the significance of
this skew-symmetry comes from integrating (4.12) over V . Let Q be the global linear
momentum of the aluminium:

Q =

∫
qadV =

∫
qPdV .

Then integrating (4.10) gives

∂2Q

∂t2
− c2

∫
∇2qPdV = ω2

B(êz ×Q). (5.2)

Now suppose that ωB is large enough for the Lorentz force to dominate the grav-
itational forces. That is, ω2

B � c2k2, where k is the dominant wavenumber of the
disturbance. Then (5.1) simplifies to

∂2Q

∂t2
≈ ω2

B(êz ×Q) (ωB � ck)

from which

∂4Q

∂t4
≈ −ω4

BQ (ωB � ck). (5.3)

Equation (5.3) gives rise to complex wave frequencies, and so we would expect that a
disturbance with non-zero linear momentum, Q, will become unstable for sufficiently
large values of J0Bz . We shall confirm later, by numerical experiment, that this is
indeed the case.

We now pose the question: how is the instability maintained? We would like to
establish an equation like (3.5) which identifies the source of energy for the instability.
Once again, our wave equation (4.12) provides a convenient way forward. We take
the dot product of (4.10) with qP , use (4.4) to relate ∇ · qP to η, and integrate over V
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while noting that qP ·F R integrates to zero. This gives

∂

∂t

∫ [
1
2
ρ̄q̇2

P + 1
2
∆ρgη̇2

]
dV =

J0Bz

hH

∫
(qP × q̇P )z dV . (5.4)

For the oscillation to grow, the integral on the left must increase with time, so, if
the right-hand integral is positive definite, the motion will be unstable. Now our
simple analogue of a compound pendulum suggests that the interface will be unstable
whenever the aluminium is free to slosh back and forth in two mutually perpendicular
directions and at a single frequency. That is, the cell will be unstable whenever the
geometry of the cell admits modes of the form

qP =
(
qx (x) cosωt, qy (y) sinωt

)
(5.5)

where qx and qy are both positive. It is readily confirmed that this is indeed the case
since in such instances the integral on the right of (5.4) becomes∫

(qP × q̇P )z dV = ω

∫
qxqydV > 0 (5.6)

and instability follows. Note that (5.5) corresponds to a pseudo-rotating vector and
thus to a tilted interface which is executing a pseudo-rotational motion. Such a
rotating interface is frequently associated with reduction cell instabilities (Segatz &
Droste 1994).

The physical reasons for this instability are precisely the same as for the compound
pendulum. They are implied in figure 3 and bound up in equation (4.9). A tilting of
the interface in one direction causes a horizontal flow of current and of aluminium.
The interaction of this current with Bz produces a horizontal force which is mutually
perpendicular to, and 1

2
π out of phase with, the horizontal motion in the aluminium.

Two such tilting motions in perpendicular directions can reinforce each other, with
the force from one motion acting on the velocity field of the other.

Of course, we have not determined which geometries admit modes of the form
(5.5). However, there are at least two simple cases in which (5.5) constitutes a valid
mode: these are square and circular domains in the limit of small ωB/ω. (The circular
case is analysed below.) In general, though, for rectangular cells of arbitrary aspect
ratio, (5.5) is not a valid mode. Nevertheless (5.4) remains valid. That is, equation
(5.4) represents a simple energy criterion which shows which type of wave motion
may extract energy from the electric and magnetic fields. If the interface is to be
unstable, we simply require ∫

(qP × q̇P )zdV > 0. (5.7)

Conversely, a given mode q∗P cannot destabilize a cell if
∫

(q∗P × q̇∗P )zdV < 0. This is
true whether or not q∗P is a solution of (4.12).

Note that our description of the instability mechanism does not involve gravity.
It is purely electromagnetic in its origin. The role of gravity is simply to provide
an equilibrium configuration about which we may perturb. However, gravity does
influence the stability threshold. This is because, in order to satisfy (5.7), our interface
must be able to support two mutually perpendicular oscillations at the same frequency.
When ωB is weak, this need not be the case. As with the compound pendulum, the
first role of Bz is to shift the position of the gravitational frequencies on the real axis
until two frequencies meet. Expression (5.7) does not help therefore with determining
the stability threshold.
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5.3. Instabilities in circular domains

We conclude this section by looking at unstable waves in closed, circular domains.
This is of interest as it demonstrates the instability in a particularly simple way.
Suppose the fluids occupy the domain 0 < r < R, and consider solutions of the form

φP = φ̂(r) exp[ j(θ − ωt)]; Ψ = Ψ̂ (r) exp[ j(θ − ωt)].

It is readily confirmed that (4.13) requires Ψ̂ to be linear in r, Ψ̂ = Ar, and φ̂ takes
the form

φ̂(r) = BJ1(kr)− (k2
B/k

2)Ar; k = ω/c.

Boundary conditions (4.15) require

φ̂′(R) = 0; φ̂(R) = jRA,

which yields the dispersion relation

k2
BJ2(kR) = jk2J ′1(kR).

This requires that k is complex, and the waves are unstable for all non-zero kB . The
key point, though, is that the interface near marginal stability is of the form

η ∼ J1(kr) sin(θ − ωt),
which represents a rotating, tilted interface. This is precisely what is expected from
the compound pendulum analogue and is in accordance with our energy criterion.

6. A Fourier description of the motion
In this section, we show that our shallow-water equation (4.12) is equivalent to the

mode-by-mode analysis of SW94 in the limit of small kh. We do this by expanding
qP in modes and then rewriting (4.12) in matrix form. Our motivation is partially to
show that our analysis is consistent with the previous studies and partially because
some results (particularly those relating to the stability threshold) are more readily
obtained using the matrix formulation.

6.1. A matrix formulation of the wave equation

Following SW94, we start by expanding qP in a set of orthogonal functions ψi defined
by the eigenvalue problem

∇2ψi + (ωgi/c)
2ψi = 0; ∇ψi · n = 0 on S. (6.1)

We use ψi to represent the velocity potential of qP and write

qP =
∑

qi =
∑

k−1
i xi(t)∇ψi.

Here xi(t) are the amplitudes of the modes and the factor k−1
i is introduced to simplify

the subsequent algebra. Of course, ψi are just the gravitational modes in the absence
of Lorentz forces, and ki and ωgi are the corresponding wavenumbers and frequencies.

We now take the dot-product of (4.12) and ∇ψi and integrate over V . The result is

ẍi(t) + ω2
gixi = ω2

B

∑
Kijxj , (6.2)

where the interaction matrix Kij has elements

kikjKij =

∫
(∇ψj × ∇ψi)zdV . (6.3)
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Here we have normalized ψi such that∫
ψ2
i dV = 1.

Note that Kij is skew-symmetric and has all of its diagonal elements equal to zero.
For the particular case of a rectangular cell of dimensions (Lx, Ly), the modes are

simple cosines:

ψi = ψmn ∼ cos(mπx/Lx) cos(nπy/Ly),

k2
i = k2

mn = (mπ/Lx)
2 + (nπ/Ly)

2.

The corresponding interaction matrix is

Kmn,m′n′ =
16∆mn,m′n′

LxLykmnkm′n′
, (6.4)

where

8∆mn,m′n′ = [m′(n+ n′)δn+n′(δm+m′ − δm−m′)
−n′(m+ m′)δm+m′(δn+n′ − δn−n′)] (6.5)

and δr is defined as 2/r if r is odd and zero if r is even. Equations (6.2) and (6.4) are
equivalent to those of SW94 in the limit of small kH .

We now truncate xi at some suitably small wavenumber and rewrite (6.2) in matrix
form:

ẍ+Ωgx = ω2
BKx. (6.6)

This truncation is the primary weakness of the matrix formulation. We might try to
defend this on the basis of the fact that, in reality, friction damps out the high-k
waves. However, we require an inviscid theory which is self-consistent, so we must
always check that the observed instabilities are independent of the number of modes
used. We shall see in §7 that around 15 modes are sufficient to capture the behaviour
of the large-wavelength instabilities. The effect of introducing more modes is not to
change the predicted behaviour of the small-k instabilities, but rather to introduce
additional unstable modes with smaller wavelengths. In addition, it might be argued
that these small-wavelength perturbations are more susceptible to being damped out
by friction. Consequently, truncation seems physically reasonable provided one is
interested only in the long-wavelength behaviour.

6.2. General behaviour of the matrix equations

Consider the case where ωB is much greater than the gravitational frequencies of the
truncated system. In this case, (6.6) gives

d4x

dt4
= −ω4

BS1x; S1 = −KK . (6.7)

The equivalent eigenvalue problem is

S1x = −(ω/ωB)4x = λx. (6.8)

Now S1 is real, symmetric and has positive diagonal elements. It follows that the
eigenvalues, λi, are real and at least some of them are positive. We conclude, therefore,
that for large ωB at least some frequencies of our truncated system are complex.

Let us now return to the general eigenvalue problem represented by (6.6):

(Ωg − ω2
BK)x = λx; λ = ω2. (6.9)



Stability of interfacial waves in aluminium reduction cells 289

Suppose that x is truncated after N modes and that the diagonal elements of Ωg are
arranged in order of increasing frequency, from ω2

g1 to ω2
gN . Then we may show that

in the truncated system the eigenvalues, λi, have the following general properties:
(a) ω2

g1 6 Re(λ) 6 ω2
gN;

(b)
∑
λi =

∑
ω2
gi;

(c) λi/ω
2
B are zero or purely complex if ω2

B � ω2
gN .

These properties are sufficient to define the general behaviour of λ. The first follows
from the skew-symmetry of K . That is, if x̄i is the complex conjugate of xi, then∑

i

(ω2
gi − λ)|xi|2 = ω2

B

∑
i

∑
j

Kijxjx̄i.

If we normalize the eigenvectors to have unit magnitude and take the complex
conjugate of the transpose of this equation, we obtain

Re(λ) =
∑

ω2
gi|xi|2.

Condition (a) then follows. Condition (b), on the other hand, arises from the fact
that the sum of the eigenvalues equals the trace of Ωg − ω2

BK , while condition (c) is
a standard result for skew-symmetric matrices.

The situation is therefore clear. As ωB is increased, the eigenvalues move along the
real axis but remain within the limits ω2

g1 < λ < ω2
gN . At some critical value of ωB ,

two or more eigenvalues become complex (an inevitable consequence of condition
(c)) and do so in the form of complex conjugate pairs (condition (b)). However,
the real part of the complex eigenvalues remain bounded by the least and largest
gravitational frequency of the truncated set of modes (condition (a)). Of course, this
is precisely what is observed in the numerical solutions of SW94 and of BR94 and in
the examples which follow.

7. Stability thresholds and a new stability criterion
The question of the threshold of stability was tackled in two different ways in

SW94 and BR94. The first and most obvious route is to solve the general eigenvalue
problem defined by (6.9). A second and simpler approach, emphasized particularly in
SW94, is to look at the two modes which have the closest gravitational frequencies
and reduce (6.9) to a 2 × 2 equation involving only those modes. This results in a
simple analytical criterion for the onset of instability. This works well if there are two
and only two modes with close natural frequencies. (Such modes interact with each
other but not with the other modes.) It is not reliable if the initial frequencies, ω2

gi, are
uniformly dispersed along the real axis or if they are grouped in clusters composed
of more than two frequencies.

The main purpose of this section is to show that there is a third approach to
stability, which furnishes a sufficient condition for stability without the need to solve
the eigenvalue problem (6.9). First, however, we consider briefly a simple set of
numerical examples which illustrate a number of useful and unexpected results.

7.1. Example of stability in a rectangular domain

We now present a sequence of simple numerical examples which illustrate the phe-
nomenon. We shall show that, frequently, it is not the pair of modes with the closest
gravitational frequencies which go unstable first. Moreover, the modes which go un-
stable at the lowest value of J0Bz need not be the most dangerous. Often the highest
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growth rates are observed in the pairs of modes which are the second or third to go
unstable. Of course, it is the modes with the highest growth rates which are most likely
to survive the friction which is inevitably present in any real flow. Finally, we shall
see that the truncation of the modes is not a severe problem and that, as observed in
SW94, around 15 modes is sufficient to capture the behaviour of the long-wavelength
instabilities.

Note that, since friction is absent from our model, the stability threshold will
depend on the number of modes included in our analysis. That is, the threshold value
of ωB will depend on the minimum separation of the closest interacting gravitational
frequencies. As the number of modes tends to infinity, this threshold will tend to zero.
Of course, in practice only the long waves survive the friction present in the cell, and
so in reality there is a cut-off in wavenumber. (Typically, only the first five modes are
seen in a real cell.) Consequently, we shall focus only on the instability of the first
few modes, but include higher wavenumbers in our analysis to ensure that truncation
does not cause numerical errors in our long-wavelength predictions.

For simplicity, we confine ourselves to a rectangular domain. Many reduction cells
have aspect ratios, Lx/Ly , in the range 0.3–0.4, and we consider both values. We
start by rewriting (6.9) in dimensionless form. We use k1 = π/Ly as a characteristic
(inverse) lengthscale and introduce

k̂i = ki/k1; λ̂ = ω2/(ck1)
2,

and

ε =

(
2Ly
π

)4
J0Bz

∆ρghHLxLy
=

(
2Ly
π

)4
ω2
B

c2LxLy
.

Our matrix equation (6.9) then becomes

k̂2
i xi − ε

∑
j

k−1
i k

−1
j ∆ijxj = λ̂xi, (7.1)

where ∆ij is defined by (6.5). (There is no implied summation in the first term.) Note
that each mode is characterized by two integers, (m, n), as shown in §6.1.

We consider first the case of Ly/Lx = 0.3. The trajectories of the eigenvalues in the
complex plane are shown in figure 7 where the dots mark eigenvalues computed at
constant intervals of ε and the stars represent the initial position of the eigenvalues
(at ε = 0). Three ranges of ε are indicated, corresponding to ε < 0.12, ε < 0.15, and
ε < 0.20. Figure 7(a) shows that, by ε = 0.12, one pair of eigenvalues has coalesced
and moved into the complex plane. In fact, these complex eigenvalues first appear
at ε = 0.0577, through the interaction of the (3,0) and (0,1) modes. (We classify
the eigenvalues in terms of their mode number (m, n) when ε = 0.) By ε = 0.15,
the complex eigenvalues have returned to the real axis and a new pair of unstable
frequencies have appeared. This arises from an interaction of a (2,0) mode with one
of the pair of previously unstable eigenvalues. By ε = 0.2, two additional unstable
pairs have appeared. One arises from the interaction of (1,1) and (2,1) modes, and
the other through the interaction of the (1,0) mode with the second of the pair of
previously unstable modes. We summarize the behaviour in table 1.

This simple example exhibits several interesting features. First, it is not the modes
with the closest gravitational frequencies ωgi which go unstable. In fact, the closest
gravitational frequencies are the (0,1) and (1,1) modes, yet at no time do they combine
to produce an instability. Second, by ε = 0.2, the largest growth rate is exhibited not
by the first instability, but by the fourth one. Given that any real flow has dissipation,
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Figure 7. The trajectories of the eigenvalues in the complex plane with Ly/Lx = 0.3 and
(a) εmax = 0.12, (b) εmax = 0.15, and (c) εmax = 0.2.

Instability Modes Comments

First (3,0) + (0,1) Restabilizes

Second (2,0) + 1
2

[(3,0) + (0,1)] —

Third (1,1) + (2,1) Furthest to the right

Fourth (1,0) + 1
2

[(3,0) + (0,1)] Furthest to the left

Table 1. Summary of unstable mode interactions with Ly/Lx = 0.3.
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Figure 8. The trajectories of the eigenvalues in the complex plane with Ly/Lx = 0.4 and
(a) εmax = 0.12, (b) εmax = 0.2, and (c) repeat of (b) for 63 modes.

it is this last instability which is the most likely to appear in practice. Third, if we
had tried to capture the first instability by throwing out of (7.1) all of the modes
except for (3,0) and (0,1), then we would have predicted an instability at ε = 0.0855,
which represents an error of 48%. This indicates that more than just two modes are
interacting to produce the instability.

The case of Ly/Lx = 0.4 is shown in figure 8, for the ranges ε < 0.12 and ε < 0.2.
This time the instabilities exhibit a simpler behaviour and appear in the order shown
below (table 2). Once again, it is not the closest gravitational frequencies which lead
to the first instability. Nor is it the first instability which ultimately has the highest
growth rate. In fact, it is the third to appear.

Notice that in both examples, the first instability appears at quite low values of ε:
ε = 0.0577 (ωBLy/c = 1.08) in the first case and ε = 0.0875 (ωBLy/c = 1.15) in the
second. This low threshold is in line with the predictions of SW94 and BR94, who
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Instability Modes Comments

First (3,0) + (2,1) Furthest to the right
Second (0,1) + (1,1) —
Third (1,0) + (2,0) Furthest to the left

Table 2. Summary of unstable mode interactions with Ly/Lx = 0.4.

Number of modes, N Critical ε Unstable mode pairs

15 0.0878 (3,0) + (2,1)
63 0.0875 (3,0) + (2,1)

0.0649 (3,1) + (4,0)
224 0.0875 (3,0) + (2,1)

0.0648 (3,1) + (4,0)
0.0608 (9,2) + (10,1)

Table 3. The effect of truncation on the predicted unstable mode pairs with
Ly/Lx = 0.4 and ε < 0.1.

note that an instability may result for quite modest values of ω2
B if two values of

ω2
gi are particularly close. The idea is that, while ωB is still quite small, two adjacent

frequencies might interact, converge, and move off into the complex plane. If the
initial frequencies are close, this interaction is a local one, in the sense that it does
not involve the other modes. This, in turn, leads to the idea that modes with close
gravitational frequencies are dangerous. However, it is important to note that K is
very sparse. For example, in a rectangular cell ∆mn,m′n′ is zero for most combinations
of (m, n) and (m′, n′). Indeed only around one in five mode-pairs are coupled. In
general, then, relatively few modes exchange energy. It is not difficult to show that an
instability cannot develop from these uncoupled modes, so it is only the separation
of the coupled modes which is important. Thus a stability criterion based on keeping
all gravitational modes apart is overly conservative. This point is of considerable
practical importance and is clearly illustrated in the previous examples.

We conclude this section with a discussion of truncation error. The previous results
were obtained using 15 modes. Consider the case of Ly/Lx = 0.4 and ε < 0.1. If we
increase the number of modes to first 63 and then 225, we obtain the following. (See
table 3.)

The effect of increasing N is to introduce additional unstable modes at lower
critical values of ε and with higher wavenumbers. However, the prediction of the
longest wavelength instability is unchanged. This is illustrated by figure 8(c) where
the calculation of figure 8(b) is repeated using 63 rather than 15 modes. Comparing
8(b) and 8(c), we see that the behaviour of the first three unstable modes is initially
identical for 15-mode and 63-mode truncation. The effect of adding more modes is
simply to trigger additional high-wavenumber instabilities. Since the high-k waves are
likely to be damped out by friction, truncation does not seem to be a problem, which
is exactly what SW94 concluded.

7.2. A new stability criterion

In conclusion, we derive a sufficient condition for stability based on Gershgorin’s
theorem. We start with (6.9): (

Ωg − ω2
BK
)
x = ω2x.
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Gershgorin’s theorem links each eigenvalue to one of the diagonal elements of Ωg

and places bounds on the separation of ω2
i and ω2

gi in the complex plane. That is,

∣∣ω2
i − ω2

gi

∣∣ 6 ω2
B

N∑
p=1

|Kip| . (7.2)

Now suppose ω2
gi and ω2

gj are the closest gravitational frequencies of our truncated

system. Then the frequencies ω2
i and ω2

j cannot meet on the real axis if their initial

separation exceeds the sum of the bounds ω2
Bbi and ω2

Bbj , where bi =
∑
|Kip|. Thus,

the interface is stable (with respect to our truncated set of modes) provided∣∣ω2
gi − ω2

gj

∣∣ > ω2
B

(
bi + bj

)
.

We conclude, therefore, that a sufficient condition for stability is

J0Bz

ρ̄hH
<

∣∣ω2
gi − ω2

gj

∣∣(
bi + bj

) . (7.3)

The value of (7.3) is that we need not solve the eigenvalue problem (6.9). It is only
necessary to add the elements of the appropriate columns of the interaction matrix,
K , to obtain the bounds bi and bj . It is interesting to compare (7.3) with (3.3) for the
compound pendulum. The two are very similar.

Conclusions
We have shown that a wave equation for the interface in aluminium reduction

cells can be developed from shallow-water theory. Our approach involves expressing
the Lorentz force directly in terms of the velocity and is more general than previous
formulations. The new equation is valid regardless of the existence or form of
boundaries. In the case of rectangular lateral boundaries, the model leads to the
(potentially unstable) standing waves of SW94. For circular domains, a particularly
simple form of instability is found. When an infinitely long channel is considered, we
discover a new set of unstable travelling waves.

When the equation is expressed in matrix form, in the manner of SW94, we obtain
some unexpected results. It is frequently not the pair of modes with the closest
gravitational frequencies which first become unstable. Also, the largest growth rate
is not necessarily observed in the first unstable mode-pair. Perhaps the two most
important points are that, for rectangular domains, relatively few mode-pairs are
coupled and the uncoupled pairs cannot become unstable.

We have derived a sufficient condition for stability which does not require us to
solve the equations of motion explicitly. The use of Gershgorin’s theorem enables
us to place a lower bound on the critical value of the background magnetic field at
which an instability first appears.
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